ANOVA An ANOVA (analysis of variance) is a statistical technique similar in concept to a t-test except that it tests for a significant difference among more than two means. We'll cover two types of ANOVAs; a One-Way (or single factor) ANOVA and a Two-Way (multi-factor) ANOVA or Factorial. A One-Way ANOVA analyzes the difference among the means of three or more categorical groups on a given quantitative variable. For example, in Figure 1, there are three groups of plants that were exposed to 8 hours, 12 hours and 16 hours of sunlight per day during a given growing period. The ANOVA will determine if there is a significant difference anywhere among the growth means for the three groups. This is done by comparing the means of each group and considering the degrees of freedom (a measure of sample sizes), the amount of variation between the pairs of groups, the amount of variation within groups, and the alpha value. Figure 1 - One-Way ANOVA
Note that the more data points included, the better. A "rule of thumb" is to have no fewer than 8 data points for each group. The number of data points per group does not have to be identical. Statistical
Hypotheses Interpreting the results of a One-Way ANOVA:As is always the case with hypothesis testing, we are indirectly testing the Null Hypothesis. Thus, we will either: The ANOVA analysis only indicates if there is a statistically significant difference between at least one pair of the group means. It does not indicate between which pairs the statistically significantly different lies. To find which pairs are statistically significantly different, a post hoc test needs to be performed. Check out the Tukey Test! What if a second factor (level of fertilizer) is added to the One-Way ANOVA? Figure 2 shows this addition. Figure 2 - Factorial (Two-Way ANOVA) Sunlight
The Factorial ANOVA analyzes the differences among the three column group means (Sunlight level), the difference among the row group means (fertilizer levels), and also if there is an "interaction" between the two factors. This design is called a Two-Way ANOVA or a 3X2 Factorial. To conduct this analysis in EXCEL, you must have the exact same number of data points in each cell. EXCEL has two choices for a two-factor ANOVA: with replication, and without. With replication means that you have more than one data point in a group. Without means you have only a single data point in each group. Interpreting the EXCEL output for a two-way ANOVA The Bottom Line In the previous menu, the Fruitflies activity uses a One-Way ANOVA to analyze the data set. Copyright © 1997 Central Virginia Governor's School for Science and Technology Lynchburg, VA |
|||||||||||||||||